Hemispheric albedo asymmetries in CERES and CMIP

Traute Crueger
Hauke Schmidt, Bjorn Stevens

2022 Earth Radiation Budget Workshop, October 12-14, 2022

Clear sky TOA SW upward radiation is hemispheric asymmetric (6.15 W/m²)

Surprisingly, TOA SW all-sky upward radiation is almost hemispheric symmetric

Why do we have a hemispheric symmetry in TOA SW reflection? Is the symmetry by chance?

- 1. What does contribute to the hemispheric symmetry in the satellite data (CERES)?
 - what is the role of clouds?
 - are there crucial regions?
- → Decomposition into surface/atmosphere and cloud/clear-sky contributions
- 2. Do we find a hemispheric symmetry in GCMs with similar contributions as in CERES?
 - Are there improvements across CMIP phases?
 - Are there common systematic biases in the GCMs?
 - → Cloud masking effect on hemispheric asymmetry

Decomposition into surface/atmosphere and cloud/clear sky contributions

All-sky (F)
$$F = F_{\rm srf} + F_{\rm atm}$$

$$F_{\rm atm} = \frac{F - \alpha_0 \mathscr{T}_{\rm atm}^2 S}{1 - (\alpha_0 \mathscr{T}_{\rm atm})^2}$$

$$\alpha_0$$
 Surface albedo

$$\mathscr{T}_{
m atm}$$
 Atm. transmissivity

Insolation

(Donohoe & Battisti, 2011)

Similar for clear-sky (G)

Cloud contributions to atmospheric / surface component of TOA SW reflection

$$F_{\text{atm}} - G_{\text{atm}}$$
 and $F_{\text{srf}} - G_{\text{srf}}$

$$F_{\rm srf}$$
 - $G_{\rm srf}$

Cloud masking effect on hemispheric asymmetry

No clouds → all-sky asymmetry = clear-sky asymmetry

Clouds symmetric w.r.t. equator → all-sky asymmetry < clear-sky asymmetry

-> misleading to compare hemispheric asymmetries in the all-sky and clear-sky reflections

Define reference hemispheric asymmetry, assuming symmetric cloud radiative effects ($\Delta \tilde{F}$)

$$\Delta \tilde{F} = \bar{\gamma} \Delta G$$

Attenuation of clear-sky surface reflection by clouds:

$$\gamma\!=rac{F_{
m srf}}{G_{
m srf}}$$

 ΔG Hemispheric difference clear-sky F

 $\overline{\gamma}$. Symmetric w.r.t. the equator

 F_{srf} Surface contribution to F

G_{srf} Surface contribution to *G*

Compensation mechanism only, if all-sky reflection below reference

CERES TOA SW reflection

More than half of clear-sky asymmetry is compensated by asymmetric cloud radiative effects

CERES NH-SH zonal mean asymmetries

- Atmosphere cloud contribution enhance clear-sky asymmetry in the tropics.
 Overall compensation in (sub-)polar region
- Surface contributions large over polar regions
 - → Polar/subpolar area and tropics crucial regions

CERES NH-SH asymmetries

- Similar atmosphere cloud and all-sky pattern, the former providing compensation
- Surface clouds contribution small
- Aerosol effect on northern hemisphere larger than in the south, dominating clear-sky asymmetry

20.

0.

-20

 (W/m^2)

Compensation also in CMIP?

CMIP6 compensation

- Almost all CMIP6 GCMs show compensation
- CMIP6 model mean shows slight undercompensation ($\Delta F = 0.96 \text{ W/m2}$)

CMIP6 all-sky zonal means

- Large spread of GCMs
- main biases in south polar and south tropical regions
- Hemispheric difference biases in tropics and polar regions compensate
- elsewhere negligible biases

CMIP6 model mean underestimates atmosphere cloud contributions

CMIP6 total cloud bias

- Similar biases in total clouds and all-sky
- Accumulating biases in polar areas, compensating biases in tropics
 - → Cloud radiative effect biases dominate all-sky bias

Improvement across CMIP phases?

All-sky biases

- Total asymmetry suggests no improvement, but pattern and RMSE do.
- In all CMIP phases spatially compensating biases.

CMIP cloud biases

In CMIP6, biases of individual ΔF are mainly do to $\Delta (F_{atm} - G_{atm})$ biases

Conclusions

- CERES shows almost perfect hemispheric symmetry of TOA reflection in contrast to land surfaces and aerosols, which introduce asymmetry of 6.15 W/m².
- We ask for the role of clouds, following Donohoe and Battisti (2011), and separate role of clouds in masking and compensating clear-sky asymmetry.
- CERES extratropical clouds play dominant role in compensation process.
- Tropical clouds enhance reference asymmetry.
- Extratropical clouds balance both, reference and asymmetry introduced by tropical clouds.
- Additional tropical asymmetries originate in east Pacific and Atlantic regions; west Pacific hardly contributes.
- CMIP-multi-model means show similar reflection properties as CERES.
- Mean asymmetry is smallest for oldest GCMs. However, spatial patterns indicate improvements going from CMIP3, to CMIP5 and CMIP6.
- Mean biases, but also the bias pattern of hemispheric all-sky differences are strongly related to cloud contribution biases.
- → Clouds do not only compensate, but are also main source of remaining biases in CMIP.

$\Delta F_{srf,} \Delta F_{atm}$ (all-sky) and $\Delta G_{srf,} \Delta G_{atm}$ (clear-sky)

I	F	G	\tilde{F}	$F_{\rm srf}$	$G_{ m srf}$	$F_{\rm srf}$ - $G_{\rm srf}$	F_{atm}	$G_{\rm atm}$	F _{atm} - G _{atm}
Hemispheric difference	0.09	6.15	3.96	2.25	2.04	0.21	-2.16	4.11	-6.27

CERES

Land/ocean and ice areas dominate pattern

